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Abstract We consider concentric circular defects in the two-dimensional king model, which 
are distributed acwrding to a generalized Fredholm sequence. i.e. at exponentially increasing 
radii. This type of aperiodicily does not change the bulk critical behaviour but introduces a 
marginal extended perturbation. The critical exponent of the local magnetization is obtained 
thmugh finite-size scaling, using a wmer transfer matrix approach in the extreme anisotropic 
limit. It varies continuously with the amplitude of the modulation and is closely related to the 
magnetic exponent of the radial Hilhorst-van Leeuwen model. Through a conformal mapping of 
the system onto a ship, the gap-exponent relation is shown to remain valid for such an aperiodic 
defect. 

1. Introduction 

The influence of a layered aperiodic modulation of the couplings on the critical behaviour 
of the two-dimensional king model has b&n much studied recently (see [ 11 and references 
therein). Such a perturbation may be relevant, marginal or irrelevant, depending on the sign 
of the crossover exponent 11, 21 

Q = 1 + V(UJ - 1) (1.1) 
which involves the bulk correlation length exponent v and the wandering exponent of the 
aperiodic sequence o [3, 41. 

In the case of a marginal perturbation, Q = 0, some exact results have been obtained 
for the king model. Critical exponents are found to vary continuously with the modulation 
amplitude [1,2,5-8] and. when the critical coupling is shifted, the bulk critical point 
becomes shongly anisotropic, i.e. the exponents of the correlation length, parallel and 
perpendicular to the layers, are different and their ratio varies continuously with the 
amplitude of the modulation [SI. 

For some aperiodic sequences, the defect density vanishes in the thermodynamic limit, 
there is no shift in the critical coupling and the bulk critical properties remain unchanged. 
The Fredholm sequence [9], which belongs to this class and leads to a marginal perturbation 
for the layered king model, has recently been studied on a semi-infinite system [7]. 
Continuously varying surface exponents were obtained and it was shown that this type 
8 Unit6 de Recherche associ6e au CNRS no 155. 
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of aperiodic perturbation, which happens to be very regular, can be considered as a discrete 
realization of the Hilhorst-van Leeuwen (HVL) model [lo], i.e. a semi-infinite king model 
with smoothly varying couplings. 

In the present paper, we study the critical properties of a radial aperiodic perturbation in 
the two-dimensional k i i g  model. Instead of the parallel l i e  defects of the layered system, 
we consider concentric circular defects distributed according to the Fredholm sequence. 
This type of perturbation is closely related to the radial HvL defect [ll-131. 

Our main motivation is to check the validity of the gap-exponent relation [14, U] which 
follows from the transformation of the critical correlation functions under the conformal 
mapping of the original system onto a strip [16]. Since conformal transformations cannot 
be used on strongly anisotropic systems 1171, such a relation is excluded in the case 
of bulk aperiodic perturbations. But it is known to be satisfied in some marginally 
inhomogeneous systems at the critical point, provided the inhomogeneity is properly 
transformed, as shown for a narrow-line defect [IS, 191 and later for extended defects 
of the HvL type [20, 21, 11, 121. 

The structure of the paper is the following. In section 2, we present the model and 
recall the properties of the Fredholm sequence. In section 3, the local magnetization is 
studied by the comer transfer matrix method of Peschel and Wunderling [I31 and the local 
critical exponent is compared to the value for the HvL defect. In section 4, the validity of 
the gap-exponent relation is discussed and our conclusions are given in section 5. 

2. The radial Fredholm perturbation 

We consider, in the @. +)-plane, a two-dimensional king model with Hamiltonian 

- @ H = - @ H , + g  E / s ( p , * )  S(p-p,)pdpdO p P = m p  (2.1) 
p=-m 

in the continuum limit. Here H, is the critical Hamiltonian of the unperturbed system, E 
is the energy density operator and the energy perturbation, with an amplitude g per unit 
length, is located on circles with radii p ,  = mP. 

The contribution of negative values of p to the perturbation is irrelevant since it 
renormalizes to a point defect with a finite amplitude. The local critical behaviour, which 
is governed by the long-distance behaviour of the perturbation, remains unaffected if one 
considers circles with radii distributed according to the generalized Fredholm sequence [7], 
i.e. with p ,  = m p  + 1, p > 0 and integer values of m > 1. 

This aperiodic sequence, which is the characteristic sequence of the powers of m, follows 
from the substitution on the three letters A,  E and C :  

With words of length m = 2, one recovers the usual Fredholm substitution 191. Starting the 
substihtion with A and associating to the kth letter in the sequence the digit fk = 0 for A 
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= 1 for B,  after n iterations and with m = 2, one obtains: and C ,  and 

n=O A 
n = l  A B 
n = 2  A B B C 

n = 4  A B B C B C C C B C C C C C C C 

which gives fa = 1 when k = 2 p  + 1. 
The substitution matrix has eigenvalues m, 1, 1 171, so that the wandering exponent o 

vanishes, leading to a marginal layered perturbation according to (1.1). It is easy to verify 
that the perturbation is also marginal with a radial defect The total perturbation inside a 
circle with radius R > 1 is obtained by summing over the contributions of the circles up 
to pmar xInR/ Inm 

n = 3  A B B C B C C C  (2.3) 

A 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0  

(2.4) 

and the average perturbation per unit surface at a length scale R is given by 

(2.5) - g g ( R )  - z. 
Under rescaling by a factor b = R/R', this themal perturbation transforms according to 

- =  g' b'/"g 
R' R 

so that, with v = 1 in the two-dimensional king model, g is scale invariant, i.e. the radial 
aperiodic perturbation is marginal. Furthermore, according to (2.5). the average perturbation 
density vanishes in the thermodynamic limit, leaving the bulk critical point unchanged. 

3. Corner transfer matrix study of the local magnetization 

In this section, the critical behaviour of the local magnetization at the centre of the defect 
will be deduced from a finite-size scaling analysis at the bulk critical point. mis can be 
achieved using the comer transfer matrix method of Peschel and Wunderling [13] which 
allows a study of rotation-symmetric defects, while working on a lattice. 

We first consider the sector of a lattice Ising model shown in figure 1. With the same 
lattice parameter a, = a2 = a in both directions, the opening angle is 6 = n/2. There are 

Figure 1. Seclor of the anisotropic Ising square 
lattice which is used to c o n m c l  the wmer 
m s f e r  mauix. The horizontal wuplings are 
constant and equal to KI, The verlical couplings 
follow the Fredholm sequence and are qual 
either IO Kz or to rKz (full curves). The king 
spins on the 1st row are held fixed in order m 
dculatethebca~magnetization. 

N 
' , \ 

I 

+ + + + + + + + + + + + + + + + + 
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Figure 2. Through a rescaling of the lattice 
parameters. one restores isotropy near the 
critical point. The sector of figure I (full 
uiangle) now has a vanishing opening angle 
8. Covering the plane with such senors, one 
generate the radial Fredholm defect (shaded 
circles). 

N + 1 horizontal rows with fixed boundary conditions on the last one. The interactions are 
between first-neighbour spins, constant and equal to K ,  in the horizontal direction, while 
they are given by K&) and depend on the row index, k = 0, N ,  in the vertical direction. 
This dependence follows the generalized Fredholm sequence, so that the vertical couplings 
take the form 

Kz(k) = K2 rh+l (3.1) 

where r is the modulation factor and the fks are the digits defined in (2.3). 
Let us take the extreme anisotropic limit, Kz -+ 0 and K ,  -+ w, while keeping the 

ratio A = K z / K ;  fixed ( K ;  = -1 lntanh K1 4 0 is a dual coupling). On the square lattice, 
the correlation lengths become different in the two directions with &/& 2: 2K; << 1 near 
the critical point. In order to recover an isotropic system which properly describes the 
continuum problem of the last section, one has to rescale the lattice parameters such that 
(la, = cza2, which gives a1 = 2K; -+ 0 if one takes a2 for the unit length. The opening 
angle of the sector is now reduced to B = ~ 4 K ;  and the number of sectors needed to cover 
the plane 

7r n=- 
2K; (3.2) 

goes to infinity in the extreme anisotropic limit. 
In this way, as shown in figure 2, the rotation symmetry of the original problem is 

restored and the system becomes continuous along the defects. The perturbation per unit 
length is ( r  - l ) K z / q  which allows us to identify the continuum parameter 

(3.3) 

In the extreme anisotropic limit, the Baxter comer transfer matrix 7 [22] takes the 

1 g = 5(r  - 1) 

at the critical point Ac = 1. 

simple form 

I = exp (-@) (3.4) 
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Figure 3. Variation of the local 
magnetization exponent f l ~  with the 
modulation factor r for the generalized 
Fredholm sequence with m = 2 and 
m = 3. The w e s  correspond to the 
conjectured expression of (3.9) and the 
points are finite-size scaling estimates. 

 where^ B is the infinitesimal opening angle of the sector and 7-l is the Hamiltonian of the 
inhomogeneous quantum king chain: . .  

N-1 N - l  

31 = -?. 2 c Xu; - A 2 c(2k + l)L(k)u;u$+, 1(k) = hrfi+l . (3.5) 
kI k=O 

The us are Pauli spin operators and the coupling h(k) has the same aperiodic modulation 
as Kz in 3.1. 

The magnetization of the cenbal spin, given by 
Tr ( u ~ u ~ 7 " )  

Tr (7") mo = (3.6) 

can be re-expressed in terms of the Fermi operators which diagonalize the comer transfer 
matrix [23, 241. In this way, one obtains the local magnetization as a product 

I, .. 
mo = n t a n h ( $ r e V )  (3.7) 

"4 

where the 6,s are the N non-vanishing diagonal fermion excitations of the quantum chaint 
(see [13] or appendix B in [25] for details). 

The excitations of the Hamiltonian (3.5) at the critical point 1, = 1 have been obtained 
numerically on chains with N = mp + 1 spins with p = 4 to 16 for m = 2 and p = 3 to 9 
for m = 3. The modulation factor r has been varied from 0.3 to 1.3 with steps of 0.1. The 
critical value of mo on a finite system vanishes as N-%', where the scaling dimension of the 
local magnetization, x,, is continuously varying in the present case. This exponent is also 
equal to the local magnetization exponent ,& since v = I in the 2~ Ising model. The finite- 
size estimates for bt obtained from sequence extmpolations using the BST algorithm [26] 
are shown in figure 3. 

The layered Fredholm modulation on a semi-infinite system is known to lead to the same 
critical behaviour as the HVL model with coupIings &(k) = &(l+ a/k) if one makes the 
correspondence [7] 

In r 
- lnm 

a-+-. (3.8) 

t The lowest excitation CO vanishes due lo the fixed boundary conditions. 
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Table 1. Empolated firite-size estimates for the local magnetization exponent @I and the shift 
A contributed by the IQCalized mode when r -= 1. as functions of the modulation factor I for 
the Fredholm radial defect with m = 2 md m = 3. The hguures in brackets give the estimated 
uncertainty in the last digit. Each sewnd column gives the expected values of (3.9). 

m = 2  m = 3  

r tJI A PI A 

0.3 1.7373 1.7370 1.73697(6) 1.73696559 1.0973 1.0963 1.095903 l(5) 1.09590327 
0.4 1.3221 1.3220 1.321 928 11(4) 1.321 92809 0.8373 0.8356 0.834043(1) 0.83404377 
0.5 1.0010 1.0006 0.9999999(1) 1 0.6382 0.6362 0.630929(2) 0.630929 75 
0.6 0.7405 0.7398 0.736964(3) 0.73696559 0.4801 0.4780 0.46493(6) 0.46497352 
0.7 0.5254 0.5245 0.514620) 0.514573 17 0.3538 0.3522 0.326(2) 0.324 659 52 
0.8 0.3505 0.3498 0.32191(5) 0.32192809 0.2546 0.2537 0211(6) O.2M 11401 
0.9 0.2168 0.2166 0.1517(3) 0.15200309 0.1795 0.1793 0.101(4) 0.095 903 27 
1.0 0.1250 0.125 - ~- , 0.1250 0.125 - - 
1.1 0.0692 0.0690 - - 0.0870 0.0868 - - 
1.2 0.0382 0.0377 - - 0.0611 0.0605 - - 
1.3 O.Ml5 0.0208 - - 0.M36 0.0425 - - 

Assuming the same relation for the radial defect and using the analytical result of 
reference [13] for the HvL modeI, we are led to the following conjechue for the Fredholm 
exponentt 

Here the quantity in brackets is a shifi A, contributed by a localized mode, which has to be 
added when r < 1. Our numerical estimates for are in reasonable agreement with this 
expression as shown in table 1. The uncertainties on &, estimated by comparing different 
extrapolated values given by the BST algorithm, are much smaller than the actual deviations 
from the conjectured values. Such a behaviour is known to occur when logarithmic correc- 
tions to scaling are present 1261. The correspondence (3.8) is strongly supported by the ex- 
trapolated values of the shift A for which the agreement with the expected values is excellent. 

4. Conformal mapping and gap-exponent relation 

Let us now consider the transformation of the marginal perturbation in the continuum limit 
(equation (2.1)). under the logarithmic conformal mapping [la] 

(4.1) L it7 
2n 

w=-lnz  w = u + i u  z = p e  

which transforms the whole plane into a strip (--00 < U +w, 0 c U < L) with periodic 
boundary conditions in the u-direction. The local dilatation factor is b(z) = Idw/dzl-’ = 
&p/L and the amplitude of the thermal perturbation, f ( z )  = g C p  S(p-pp), is changed into 

t The amplitude tl is half h e  one used in  1131. 
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’. 
4 c 

J-In 

Figure 4. The logarithmic conformal mapping uansfom the radial aperiodic Fredholm defect 
in the plane into a periodic defect on the strip. The period L, is proportional to the srrip width 
L. 

With the Ising model, U = 1, the perturbation is marginal, and the first part of the u- 
dependence is eliminated so that 

(4.3) 

As shown in figure 4, the perturbation now consists of straight line defects, the distance 
between two successive lines 

L, = L Inm/2n (4.4) 

being proportional to the width of the strip L. The discrete dilatation invariance of the radial 
defect on the plane has been transformed into a discrete translation invariance along the strip. 

In the case of the HvL radial defect, the continuous dilatation invariance of the 
perturbation, f ( z )  = g / p  on the plane, leads to a constant deviation from the critical 
coupling r (w)  = g ( b / L )  on the ship [ II ,  12, 251. If e+ denotes the correlation length 
associated with the spin-spin or the energy-energy correIations on the off-critical isotropic 
stnp, it satisfies the following finite-size scaling relation [ 25 ]  

<;I@. L )  = L-’x+(cL%) (4.5) 

where the gap scaling function-X+(T) is universal [27], t is the deviation from the bulk 
critical temperature and c is a non-universal constant. The defect scaling dimension follows 
from the gap-exponent relation [14-16] with 

(4.6) 
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It is continuously varying with the defect amplitude g, as expected for a marginal 
perturbation, but it varies in a universal way: different models belonging to the same 
class of universality will show the same dependence. 

With the Fredholm radial defect, which gives a periodic layered perturbation in the strip 
geomehy, one could directly deduce the gap (inverse correlation length) from the appropriate 
transfer matrix on the strip and use (4.6). Altematively, one may estimate the deviation t 
from the bulk critical temperature in (4.6) which is associated with the periodic defect. A 
measure of this deviation is provided by the shift in the critical temperature induced by the 
same perturbation (i.e. parallel line defects with a fixed distance L,) on the infinite plane. 

In order to avoid the calculation of the non-universal constant c, we shall proceed via 
a comparison to the HvL problem. We use the same extreme anisotropic S i t  as for the 
comer transfer matrix, with vertical couplings K1 -+ CO, horizontal couplings KZ -+ 0 and 
vertical ladder defects corresponding to modified couplings 

K i  = r K z  (4.7) 

as shown in figure 4. As above, a length rescaling (a2 = 1, a, = 2 K ; )  is understood 
in order to restore isotropy. For the radial HvL problem the perturbed interactions 
Kz(k)  = K z ( l +  a / k )  lead to a homogeneous shift of the horizontal couplings with 

(4.8) 

The critical temperature of a periodic layered anisotropic system follows from the 
relation [%I 

(4.9) 

where Kz-bonds are perpendicular to the layers and the sums are over a period. In the case 
of the Fredholm problem, this leads to 

( L ,  - 1)K; + K;* = L,K1 (4.10) 

where, in the extreme anisotropic limit, equation (4.7) leads to 

K;' = K; - f Inr .  (4.11) 

Putting (4.11) into (4.10) gives the criticality condition 

(4.12) 

The corresponding relation for the HvL problem is obtained using (4.10) with L, = 1. Since 
the modified coupling in (4.8) corresponds tor  = 1 + a ( 2 r / L ) ,  with L >> 1 equation (4.11) 
gives 

K K ; * F z K ; - ~ -  
L 

and finally the criticality condition reads 

(4.13) 

IT 
K; -E- = K I .  (4.14) 

L 
Comparing equations (4.12) and (4.14) and using (4.4) leads to the conjectured 
correspondence of (3.8). 
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Besides the local magnetization exponent of (3.9). the gap-exponent relation also gives 
the local energy exponent of the radial Fredholm defect as [12] 

(4.15) 

where, due to the self-duality of the Ising model, only even powers of In r /  In m enter the 
expansion [29]. 

5. Conclusion 

The close relationship between the discrete aperiodic Fredholm defect and the continuous 
H d  inhomogeneity in the two-dimensional Ising model has been established in a study of 
the surface critical behaviour of the layered system in [7]. It has also been recently verified 
for the bulk layered Fredholm defect [30]. 

In the present paper the validity of this connection, which is summarized in (3.Q is 
fuaher extended to radially symmetric defects. The inhomogeneity in this case corresponds 
to an infinite sequence of concentric circles with exponentially increasing radii. The 
separation of distant circles becoming very large, the density of defect bonds goes to zero, 
thus the bulk critical behaviour of the system remains unchanged. However, an infinite 
sequence of defect circles modifies the local critical behaviour at the centre of the defect. 

Our second observation, concerning the validity of the gap-exponent relation for the 
Fredholm defect, is somewhat unexpected. It was known until now [2] that some aspects 
of coriformal invariance, including the gap-exponent relation, are still satisfied for some 
marginally inhomogeneous systems, which either contain a finite number of defect lines 
or display a smooth variation. In the Fredholm problem the number of defect circles is 
infinite, furthermore, the perturbation changes the continuous dilatation symmetry into a 
discrete one. 

A similar analysis of the layered Fredholm defect problem [7, 301 reveals that the gap- 
exponent relation stays valid in this case, too. Now the transformed perturbation on the 
strip is still periodic with period L ,  as given in (4.4), however its shape is much more 
complicated than for the radial defect. Taking the anisotropic limit and considering the 
product of L ,  successive transfer matrices one can establish the same relation with the HvL 
model as in (3.8). These observations lead us to conjecture the validity of the gap-exponent 
relation for any marginal perturbation which does not modify the bulk critical behaviour of 
the system. 

If the marginal perturbation extends over the volume of the system with a non-vanishing 
density, the gap-exponent relation is generally no longer valid. As mentioned in the 
introduction, this type of marginal aperiodic perturbations lead to strongly anisotropic 
systems [8] which cannot be transformed using conformal techniques. 
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