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Abstract. We consider concentric circular defects in the two-dimensional Ising model, which
are distributed according to a generalized Fredholm sequence, ie. at exponentially increasing
radii. This type of aperiodicity does not change the bulk critical behaviour but introduces a
marginal extended perturbation. The critical exponent of the local magnetization is obtained
through finite-size scaling, using a corner transfer matrix approach in the extreme anisotropic
limit. It varies continuously with the amplitade of the modulation and is closely related to the
magnetic exponent of the radial Hilherst—van Leeuwen model. Through a conformal mapping of
the system onto a sirip, the gap-exponent relation is shown to remain valid for such an aperiodic
defect.

1. Introduction

The influence of a iayered aperiodic modulation of the couplings on the critical behaviour
of the two-dimensional Ising model has been much studied recently (see [1] and references
therem) Such a perturbation may be relevant, marginal or irrelevant, depending on the 51gn
of the crossover exponent [1, 2]

¢=1+vw-—1) (1.1}

which involves the bulk correlation length exponent v and the wandering exponent of the
aperiodic sequence w [3, 4].

In the case of a marginal perturbation, ¢ = 0 some exact results have been obtained
for the Ising model. Critical exponents are found to vary continuously with the modulation
amplitude [1,2,5-8] and. when the critical coupling is shifted, the bulk critical point
becomes strongly anisotropic, ie. the exponents of the correlation length, parallel and
perpendicular to the layers, are different and their ratio varies continuously with the
amplitude of the modulation [8].

For some aperiodic sequences, the defect density vanishes in the thermodynamic limit,
there is no shift in the critical coupling and the bulk critical properties remain unchanged.
The Fredholm sequence [9], which belongs to this class and leads to a marginal perturbation
for the layered Ising model, has recently been studied on a semi-infinite systern [7].
Continuously varying surface exponents were obtained and it was shown that this type
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of aperiodic perturbation, which happens to be very regular, can be considered as a discrete
realization of the Hilhorst—van Leeuwen (HvL} model [10], i.e. a semi-infinite Ising model
with smoothly varying couplings.

In the present paper, we study the critical properties of a radial aperiodic perturbation in
the two-dimensional Ising model. Instead of the parallel line defects of the layered system,
we consider concentric circular defects distributed according to the Fredholm sequence.
This type of perturbation is closely related to the radial HvL defect [11-13].

Our main motivation is to check the validity of the gap-exponent relation [14, 15] which
follows from the transformation of the critical correlation functions under the conformal
mapping of the original system onto a strip [16]. Since conformal transformations cannot
be used on strongly anisotropic systems [17], such a relation is excluded in the case
of bulk aperiodic perturbations. But it is known to be satisfied in some marginally
inhomogeneous systems at the critical point, provided the inhomogeneity is properly
transformed, as shown for a narrow-line defect [18, 19] and later for extended defects
of the gvL type [20, 21, 11, 12].

The structure of the paper is the following. In section 2, we present the model and
recall the properties of the Fredholm sequence. In section 3, the local magnetization is
studied by the corner transfer matrix method of Peschel and Wunderling [13] and the local
critical exponent is compared to the value for the HvL. defect. In section 4, the validity of
the gap-exponent relation is discussed and our conclusions are given in section 5.

2. The radial ¥redholm perturbation

We consider, in the (o, ©#)-plane, a two-dimensional Ising model with Hamiltonian

=00
~pH=-pH+g Y. 20,980 podpds gy =’ @.1)

p=—ca

in the continuum limit. Here H, is the critical Hamiltonian of the unperturbed system, £
is the energy density operator and the energy perturbation, with an amplitude g per unit
length, is located on circles with radii pp = m?.

The contribution of negative values of p to the perturbation is irrelevant since it
renormalizes to a point defect with a finite amplitude. The local critical behaviour, which
is governed by the long-distance behaviour of the perturbation, remains unaffected if one
considers circles with radi distributed according to the generalized Fredholm sequence [7],
i.e. with pp =mP + 1, p 2 0 and integer values of m > 1.

This aperiodic sequence, which is the characteristic sequence of the powers of m, follows
from the substitution on the three letters A, B and C:

A—>SA)=ABCC ... C

B—>SB)=BCCC---C

C—>SC)=CCCC--C.
m

(2.2)

With words of length m = 2, one recovers the usual Fredholm substitution [9]. Starting the
substitution with A and associating to the kth letter in the sequence the digit f, = 0 for A
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and C, and fr =1 for B, after n iterations and with m = 2, one obtains:

n=0 A

n=1 A B

n=2 A B B C

n=3 A B BCBCCC @3)
n=4 A B BCBCCCBCCCC CCCSC

i 01107100071 00300G6UO0 0

which gives fr =1 when £ =27 + 1.

The substitution matrix has eigenvalues m, 1, 1 [7], so that the wandering exponent «
vanishes, leading to a marginal layered perturbation according to (1.1). It is easy to verify
that the perturbation is also marginal with a radial defect. The total perturbation inside a
circle with radins R » 1 is obtained by summing over the contributions of the circles up
10 Pmax MM R/Inm

Py - X
2ng pE= m : 24)
and the average perturbation per unit surface at a length scale R is given by
- g
B~ 2.5
g(R) R (2.5}

Under rescaling by a factor b = R/R’, this thermal perturbation transforms according to

g _ w8

7 =""% : @9
so that, with v = I in the two-dimensional Ising model, g is scale invariant, i.e. the radial
aperiodic perturbation is marginal. Furthermore, according to (2.5), the average perturbation
density vanishes in the thermodynamic limit, leaving the bulk critical point unchanged.

3. Corner transfer matrix study of the local magnetization

In this section, the critical behaviour of the local magnetization at the centre of the defect
will be deduced from a finite-size scaling analysis at the bulk critical point. This can be
achieved using the corner transfer matrix method of Peschel and Wunderling [13] which
allows a study of rotation-symmetric defects, while working on a lattice,

We first consider the sector of a lattice Ising model shown in figure 1. With the same
lattice parameter a; = a; = a in both directions, the opening angle is 8 = /2. There are

O,

£
rd hY

i
rg
Pl

Figure 1. Sector of the anisotropic Ising square

z 2 fattice which is used to conmstruct the cormer

z > ransfer matrix. The horizontal couplings are

. . constant and equal to K. The vertical couplings

. \\\ N  follow the Fredholm sequence and are equal

,/1 —[\\ either to K3 or to r K3 (full curves). The Ising

spins on the last row are held fixed in order to
A T S S T 2 calculate the local magnetization.
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Figure 2. Through a rescaling of the lattice
parameters, one restores isotropy near the
critical point. The sector of figure 1 (full
triangle} now has a vanishing opening angle
8. Covering the plane with such sectors, one
generate the radial Fredholm defect (shaded
circles).

N + 1 horizontal rows with fixed boundary conditions on the last one. The interactions are
between first-neighbour spins, constant and equal to K in the horizontal direction, while
they are given by Ka(k) and depend on the row index, &k = 0, N, in the vertical direction,
This dependence follows the generalized Fredholm sequence, so that the vertical couplings
take the form

Ka(k) = Ko rhis 3.1

where r is the modulation factor and the fis are the digits defined in (2.3).

Let us take the extreme anisotropic limit, K; — 0 and K; — <o, while keeping the
ratio A = K3 /KT fized (K} = —% Intanh K; — 0 is a dual coupling). On the square lattice,
the correlation lengths become different in the two directions with £/§, ~ 2K7 « 1 near
the critical point. In order to recover an isotropic system which properly describes the
continuum problem of the last section, one has to rescale the lattice parameters such that
§1a) = &a,, which gives a; = 2KT — 0 if one takes a; for the unit length. The opening
angle of the sector is now reduced to 8 = 4K and the number of sectors needed to cover
the plane

b1

"= 2Ky

. o (3.2)

goes to infinity in the extreme anisotropic limit,

In this way, as shown in figure 2, the rotation symmetry of the original problem is
restored and the system becomes continuous along the defects. The perturbation per unit
length is (r — 1)K, /a; which allows us to identify the continuum parameter

g=%r-1 (3.3)

at the critical point A, = 1.
In the extreme anisotropic limit, the Baxter corner transfer matrix 7 [22] takes the
simple form

T =exp(—36H) 34



Radial Fredholm perturbation 3929
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Figure 3.  Variation of the local
magnetization exponent f; with the
modulation factor r for the generalized
Fredholm sequence with m = 2 and
m = 3. The curves correspond to the
conjectured expression of (3.9) and the
points are finite-size scaling estimates.

where ¢ is the infinitesimal opening angle of the sector and ‘H is the Hamlltoman of the
inhomogeneous quantum Ising chain:

N-—-1 N-—1 -
=13 2kef -4 3 2k + Dak)ofo}, AE) =arfs | (3.5)
k=1 k=0

The ¢'s are Pauli spin operators and the coupling A(k) has the same aperiodic modulation
as &, in 3.1.

The magnetization of the central spin, given by

Tr{ogonT™)
My=——"—— -
Te (7%

can be re-expressed in terms of the Fermi operators which diagonalize the comer transfer
matrix [23, 24]. In this way, one obtains the local magnetization as a product

(3.6)

N
mo =] [ tanh (3e,) (3.7)
v=1
where the €,5 are the N non-vanishing diagonal fermion excitations of the quantum chainf
(see [13] or appendix B in [25] for details).

The excitations of the Hamiltonian (3.5) at the critical point A, = 1 have been obtained
numerically on chains with N =m¥” + 1 spins with p =4 to 16 form=2and p=3109
for m = 3. The modulation factor + has been varied from 0.3 to 1.3 with steps of 0.1, The
critical value of mg on a finite system vanishes as N ™, where the scaling dimension of the
local magnetization, xy, is continuocusly varying in the present case. This exponent is also
equal to the local magnetization exponent f; since v = 1 in the 2D Ising model. The finite-
size estimates for §; obtained from sequence extrapolations using the BST algorithm [26]
are shown in figure 3. )

The layered Fredholm modulation on a semi-infinite system is known to lead to the same
critical behaviour as the HvL model with couplings K2 (k) = Ko(1 4 e/k) if one makes the

correspondence [7]
1 ‘
- =L . (3.8)
- Inm

t The lowest excitation ep vanishes due to the fixed boundary conditions.
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Table 1. Extrapolated finite-size estimates for the local magnetization exponent §; and the shift
A contributed by the localized mode when r < 1, as functions of the modulation factor r for
the Fredholm radial defect with m = 2 and s = 3. The figures in brackets give the estimated
uncertainty in the last digit, Each second column gives the expected values of (3.9).

r Br A B A

03 17373 17370  1.73697(6) 1.7369655% 1.0973  1.0963 1.0959031(5) 1.095%0327
04 13221 1.3220  1.32192811(4) 1.32192809 0.8373 (0.8356 0.334043(1) 0.83404377

05 L0010 1.0006 09999999(1) 1 0.6382 0.6362 0.630929(2) 063092975
06 07405 07398 0.736964(3) 0.73696559 04301 04780 0.46493(6) 046497352
07 05254 05245 0.51462(7) 051457317 03538 03522 0.326(2) 0.324 65952
0.8 03505 03498 0.32191(5) 032192809 02546 02537 0.211(6) 0.20311401
09 02168 02166 0.1517(3) 0.15200309 01795 01793 (.101(4) 0.095903 27
1.0 01250 0125 — _— 0.1250 0125 — —
1.1 0.0692 00690 — - 0.0870 00868 — —
1.2 00382 00377 — — 0.0611 00605 — —
1.3 00215 00208 — — 0.0436 0.0425 — —

Assuming the same relation for the radial defect and using the analytical result of
reference [13] for the HvL model, we are led to the following conjecture for the Fredholm

exponentf
Inr \2 poe sinh?® u
=22 d . k
A (lnm) fo * Sub (2| 2L | cosh u) (+ ) G

nm
Here the quantity in brackets is a shift A, contributed by a localized mode, which has to be
added when r < 1. Our numerical estimates for 5; are in reasonable agreement with this
expression as shown in table 1. The uncertainties on 8, estimated by comparing different
extrapolated values given by the BST algorithm, are much smaller than the actual deviations
from the conjectured values. Such a behaviour is known to occur when logarithmic correc-
tions to scaling are present [26]. The correspondence (3.8) is strongly supported by the ex-
trapolated values of the shift A for which the agreement with the expected values is excellent.

Inr

Inm

4. Conformal mapping and gap-exponent relation

Let us now consider the transformation of the marginal perturbation in the continzum limit
(equation (2.1)), under the logarithmic conformal mapping [16]

L .
=—Inz w=u+iv 7= pe” (4.1)

which transforms the whole plane into a strip (—o0 < 1 < +00, 0 < v < L) with periodic
boundary conditions in the v-direction. The local dilatation factor is b(z) = |dw/dz|~! =
2mp/L and the amplitude of the thermal perturbation, 1(z) = g 3, 8(p—pp), is changed into

/v +oo

L) =

Yo /v +co Yru 1 2dru
@) S (Y )

1 The amplitude « is half the one used in [13].
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K,

Lm

Figure 4. The logarithmic conformal mapping transforms the radial aperiodic Fredholm defect
in the plane into a periodic defect on the strip. The petiod Ly, is proportional to the strip width
L. '

With the Ising model, v = I, the perttirbation is marginal, and the first part of the u-
dependence is eliminated so that

o=t (3) B of-on[ (2]

p=—o0
= Linm
=g 3 s(u-pER0). 43
p=—c0 4

As shown in figure 4, the perturbation now consists of straight line defects, the distance
between two successive lines

Ln=Llnm/2n 4.4)

being proportional to the width of the strip L. The discrete dilatation invariance of the radial
defect on the plane has been transformed info a discrete translation invariance along the strip.

In the case of the HvL radial defect, the continuous dilatation invariance of the
perturbation, £(z) = g/p on the plane, leads to a constant deviation from the critical
coupling #(w) = g(2mw/L) on the strip [11, 12, 25]). If &; denotes the correlation length
associated with the spin—spin or the energy—energy correlations on the off-critical isotropic
strip, it satisfies the following finite-size scaling relation [23]:

£, L) = L' Xyl n) (4.5)

where the gap scaling function® X;(7) is universal [27], ¢ is the deviation from the bulk
critical temperature and ¢ is a non-universal constant. The defect scaling dimension follows
from the gap-exponent relation [14-16] with

L 1
o _ -1 — v
= = — L . .
x 558 (t, L) o Xs(cL) (4.6)
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It is continuously varying with the defect amplitude g, as expected for a marginal
perturbation, but it varies in a universal way: different models belonging to the same
class of universality will show the same dependence.

With the Fredholm radial defect, which gives a periodic layered perturbation in the strip
geometry, one could directly deduce the gap (inverse comrelation length) from the appropriate
transfer matrix on the strip and use (4.6). Alternatively, one may estimate the deviation ¢
from the bulk critical temperature in (4.6) which is associated with the periodic defect. A
measure of this deviation is provided by the shift in the critical temperature induced by the
same perturbation (i.e. parallel line defects with a fixed distance L,,) on the infinite plane.

In order to avoid the calcnlation of the non-universal constant ¢, we shall proceed via
a comparison to the HvL problem. We use the same extreme anisotropic limit as for the
corner transfer matrix, with vertical couplings K1 — co, horizontal couplings K3 —+ 0 and
vertical ladder defects corresponding to modified couplings

K, =rk, @.7)

as shown in figure 4. As above, a length rescaling (a; = 1, @ = 2K7}) is understood
in order to restore isotropy. For the radial HvL problem the perturbed interactions
Ka(k) = Kol 4+ o/ k) lead to 2 homogeneous shift of the horizontal couplings with

2
K=K, (1 + af”) : (4.8)

The critical temperature of a periodic layered anisotropic system follows from the
relation [28] -

YK =Y K 4.9)
J i

where K»-bonds are perpendicular to the layers and the sums are over a period. In the case
of the Fredholm problem, this leads to

(Lw — DK3 + K3* = Lok, (4.10)
where, in the extreme anisotropic limit, equation (4.7) leads to
K§*=K§‘—-%lnr. 4.1D)
Putting (4.11) into (4.10) gives the criticality condition
Inr
K ——=K;. 4,12
T 1 4.12)

The corresponding relation for the HvL problem is obtained using (4.10) with L, = 1. Since
the modified coupling in (4.8) corresponds to r = 1+a(2x /L), with L 3> 1 equation (4.11)
gives

K~ K — a% (4.13)
and finally the criticality condition reads
b4
Ky —ay =K. (4.14)

Comparing equations (4.12) and (4.14) and using (4.4) leads to the conjectured
correspondence of (3.8).
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Besides the local magnetization exponent of (3.9), the gap-exponent relation also gives
the local energy exponent of the radial Fredhelm defect as [12]

Inr\? Inr \* '
x;’=1+2(£) +o{(—"5)} (4.15)
lnm Inm
where, due to the self~duality of the Ising model, only even powers of Inr/lnm enter the
expansion [29]. '

5. Conclusion

The close relationship between the discrete aperiodic Fredholm defect and the continuous
HvL inhomogeneity in the two-dimensional Ising model has been established in a study of
the surface ¢ritical behaviour of the layered system in {7]. It has also been recently verified
for the bulk layered Fredholm defect [30].

In the present paper the validity of this connection, which is summarized in (3.8), is
further extended to radially symmetric defects. The inhomogeneity in this case comresponds
to an infinite sequence of concentric circles with exponentially increasing radii. The
separation of distant circles becoming very large, the density of defect bonds goes to zero,
thus the bulk critical behaviour of the system remains unchanged. However, an infinite
sequence of defect circles modifies the local critical behaviour at the centre of the defect.

Our second observation, concerning the validity of the gap-exponent relation for the
Fredholm defect, is somewhat unexpected. It was known until now [2] that some aspects
of conformal invariance, including the gap-exponent relation, are still satisfied for some
marginally inhomogeneous systems, which either contain a finite number of defect lines
or display a smooth variation. In the Fredholm problem the number of defect circles is
infinite, furthermore, the perturbation changes the continuous dilatation symmetry into a
discrete one. '

A similar analysis of the layered Fredholm defect problem [7, 30] reveals that the gap-
exponent relation stays valid in this case, too. Now the transformed perturbation on the
strip is still periodic with period L,, as given in (4.4), however its shape is much more
complicated than for the radial defect. Taking the anisotropic limit and considering the
product of L, successive transfer matrices one can establish the same relation with the HvL
model as in (3.8). These observations lead us to conjecture the validity of the gap-exponent
relation for any marginal perturbation which does not modify the bulk critical behaviour of
the system.

If the marginal perturbation extends over the volume of the system with a non-vanishing
density, the gap-exponent relation is generally no longer valid. As mentioned in the
introduction, this type of marginal aperiodic perturbations lead to strongly anisotropic
systems [8] which cannot be transformed using conformal techniques.
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